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A Geometric Proof of Total Positivity 
for Spline Interpolation 

By C. de Boor * and R. DeVore* ** 

Abstract. Simple geometric proofs are given for the total positivity of the B-spline collocation 
matrix and the variation diminishing property of the B-spline representation of a spline. 

1. Introduction. Perhaps a better title would be "Adding a knot can be illuminat- 
ing" since the purpose of this note is to show how this idea can be used to give 
simple proofs of several important properties of B-splines, including the total 
positivity of the B-spline collocation matrix, and the sign variation diminishing 
property of the B-spline representation. We show (as did Lane and Riesenfeld [6]) 
that variation diminution follows immediately from the fact that a B-spline on a 
given grid is a nonnegative linear combination of B-splines on a refined grid. We use 
the same fact to prove the nonnegativity of any minor of the collocation matrix and, 
with a bit more care, even characterize which of these minors are positive. 

The total positivity of the collocation matrix was originally proved by S. Karlin [5] 
in his development of the general theory of total positivity. He derives variation 
diminution from total positivity, as can be done for arbitrary matrices. In fact, it is 
well-known that variation diminution is equivalent to sign regularity. But, because of 
the great practical interest in these spline properties, it is desirable to have a more 
direct, spline- specific proof. Such a proof was given in [3], but again variation 
diminution was derived from total positivity. We obtain both properties directly. 
This was motivated in part by the work of J. Lane and R. Riesenfeld [6], who gave a 
direct proof of variation diminution based on spline evaluation algorithms used in 
computer-aided design which can be interpreted as "adding knots". But it seems to 
be much simpler to follow Bbhm's idea [1] of adding one knot at a time as we do in 
Section 3. We note that Jia [4] has done related work concerning the total positivity 
of the discrete B-spline collocation matrix. 

Let k > 0 be a fixed integer which is the order of the splines. We call t= (ti)nl k 

a knot sequence if t1 < t+ 1, 1 < i < n + k and t1 < ti+k, i = 1,... ,n. The B-splines 
of order k for this knot sequence are given by 

., \[1 
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where [ti,... ,ti+k denotes a kth order divided difference and u := max{u, 0). It 
follows that Ni > 0 and supp N = (to ti+k). On each interval (tj, tj+1), Ni is a 
polynomial of order k (degree < k). The B-splines are linearly independent and 
ENj 1 on [tk, tj. In particular, if the number x E (t1, tfl+k) appears exactly k - 1 
times in t, then there is only one B-spline which is nonzero at x and its value at x is 
one. For these and other properties of B-splines, see [3]. 

2. Knot Refinement. We say that the knot sequence s is a refinement of t if s 
contains t as a subsequence. Our only tool in the subsequent arguments is the 
observation that 

any B-spline Nj = Njit is a positive linear combination of some of 
the B-splines Nj':= NjAS for the refined knot sequence s. 
Precisely, 

(2.1) Nj = Eaj(i)Ni' 
with a1 nonnegative, and supp aj = [1, u], where (s1, S,+k) is 
the smallest segment of s containing (tJ,... ,t1+k) as a subse- 
quence. 

We first prove (2.1) for the special case that 
s = (..., tv , - 1 9sV, tv,. ..) 

i.e., s is obtained from t by the addition of the knot sv (satisfying t1_1 < s, < ti,, of 
course). Then 

(2.2) ~~~~~~N'for] + k < v, 
(2.2) Nj =N1 fre \N> for v <j. 

Forj < v < j + k, we have two ways of writing the divided difference [sj, ... ,sj+k+11: 

Si+ -S. Tj-Si 5jk? - = [s1,.. *'* j~k?1I 
Sj+k+l 5 j+k+l -S 

with Si:= [ ... *Si+k ] Ti:= [ti, ... , t i + k ]. Therefore, since Si+ k + 1 = tj + k and sj = 

(t1+k 
- 

tj)Tj = (S^ - S1)S1 + (Sj+k+l - SP)Sj+ 

hence 

(2.3) N= s' - NjI + j+k+l S 
Nj' , j < v <j + k. 

sj+k s Sj+k+l - + 

We can combine this with (2.2) into one formula, as follows: 

(2.4a) Nj = (1 - yj)Nj' + yj+Nj' 1, allj, 
with 

(2.4b) yj:= min{ 
j5k -5 i 

, 1}, allj. 

Consequently, 

([iI, if tj+k < Si9 

(2.5) suppa= a [ jj + 1], if tj < si, < tj+k 

[i + 1], if S, < to 

and this finishes the proof of (2.1) for this case. 
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The general case follows from the repeated application of this special case, by 
induction: Suppose that r is, in turn, a refinement of s, hence 

Nit = La, (l)N~ll, 

with N," := N.ir. Then, it follows that 

(2.6) NJ = Ef31(l)Nj", with Pi (l) = Ea1(i)ail(l). 

Therefore, /Pi > 0, since we already know that aj, aj > 0. Further, 

supp/Pi= U supp a' =[1','], 
i E supp aj 

with (r...... r,rU?k) the smallest segment of r containing (S.,... ,sUk) as a subse- 
quence. But, since [1, u] is the support of aj, i.e., (s.. ... ,sIk) is the smallest segment 
of s containing (tj,... ,tj? k) it follows that (r,,...r",?k) is also the smallest 
segment of r containing (tj,. . . ,tj -k). 

The coefficient function aj in (2.1) has been called a discrete B-spline. The above 
argument shows that the matrix (aj(i)) is the product of bidiagonal matrices with 
nonnegative entries, hence totally positive by Cauchy-Binet. This is the basic idea 
behind the proof of such total positivity in Jia [4]. 

3. Variation Diminution. We use the customary notation S-(a) for the number of 
(strong) sign changes in the sequence or function a. We want to show that 
S-E XjNj) < S-(X), i.e., the splinef:= E'XjNj changes sign no more often than its 
coefficient sequence X. This follows from: 

(i) if f := E XjNj = E K.NJ' with Nj' := Nj,, and s a refine- 
(3.1) ment of t, then S-(X) > S-('); 

(ii) if, in addition, x E (t1, tf+k) appears as a knot in s with 
(exact) multiplicity k - 1, then A'j = f(x) for some j. 

Property (ii) is clear. To prove property (i), we first consider the special case when 
s is obtained from t by the addition of a single knot. In that case, we infer from (2.4) 
that 

n n 

XX= Xj ((1 -yj)Nj' + yj+ Nj' ). 
* ~ ~1 1 

Therefore, 

(3.2) EXANj= NJ '1Nj' with K= yj Xj + (1 - yj ) Xj, all j. 

(Here, we set X := 0.) Since yj E [0,1], this implies that S-(A1j_, Xj, Aj) = 

S-(Xj.l, Aj). Therefore, S-(X) = S(..., AXj-, Aj, Aj, AKj+,...) > S(X'). This 
shows (3.1(i)) for a single knot refinement. But then by induction we get (3.1(i)) for 
any refinement. 

THEOREM 1. (Variation Diminishing Property.) S (E AjNj) < S -(X). 

Proof. Let f = E1 AjNj. We want to show that, for any increasing real sequence 
(zi)', S-((f(zi))) < S(X). We can assume that the zi are not knots and that 

pi 1 ;,i + k ) k; \f~- 3 utede Alit XtS Ac. 'aft a. ices t k&S2e Sur 

that each zi appears exactly k - 1 times in s. Then, from (3.1(ii)), the sequence 
(f(zi))' is a subsequence of X and the desired result follows from (3.1(i)). EJ 
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It is sometimes useful to visualize the coefficients (Aj) geometrically. If tj* 
(tj+l + ... + tj+k- )/(k - 1), then the continuous piecewise-linear function 
P(f, t) with vertices (tj*, Aj), j = 1,... , n, is called the B-polygon off. This polygon 
changes sign exactly as often as X. For a single knot refinement s of t, the points sj* 
are related to tj* as in (3.2), i.e., 

Si* 
= 

YJt;,- +(i -y)tj* 

Hence, the vertices of P(f, s) lie on P(f, t); which is another way of viewing 
property (3.1(i)). 

4. Spline Interpolation. We now consider spline interpolation at nodes (x)j9, 
x, < x2< ... < Xn (later we allow coalescence). Given (yi)n, we have the interpo- 
lation problem 

n 

(4.1) XjNj(xi) =y, i =1,..,n, 
J=1 

with coefficient matrix 

(4.2) A:= (Aj(Xi))7 n1 

In case xi = tj, we require that this point appear at most a total of k times in x and 
t. 

We will show that A is totally positive and furthermore characterize which minors 
of A are strictly positive. For this, let B be a square submatrix of A, 

B = A(I, J):= (Nj(xi)) 

with I and J subsequences of (1, 2,. . ., n) of the same length, 

I =: (ill.. * iM), i =:- Ale * * -jm), 

say. We call such a submatrix "good" if all its diagonal entries are nonzero. This is a 
natural distinction to make here because 

(4.3) if B is not "good ", then det B = 0. 

Indeed, assume that Njp(xi ) = 0 for some p. Then xi ? (tj, tjp+k). Assume that 
xi < tj . Then, Nj(Xq) = 0 for q < is, j > jP, and this shows that columns p,. . ., m 
of B have nonzero entries only in rows p + 1,. . . , m, hence are linearly dependent. 
So, det B = 0. The argument for the case xi > tj pk is similar. 

Next, we write det B as a linear combination of determinants of the form A'(I, K) 
with 

A':= (Nj (xi)) 

and (Nj') the B-splines for a refinement s of t. Precisely, we claim that, for a certain 
nonnegative ap, 

(4.4a) det A(I, J) = E aj(K) det A'(I, K) 

with the superscript" +" indicating that the sum is only over increasing K. Further, 

(4.4b) supp ai = supp aj, 

where aj(K):= aj,(k1) ... aji(km) and the aj are as in (2.1). 
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For the proof, we consider first the special case that s is obtained from t by the 
addition of a single knot. Since Nj = ?aj(i)Ni' by (2.1), the linearity of the 
determinant as a function of the columns gives 

(4.5) det A(I, J) = ia,(K) det A'(I, K) 

with a.(K):= aj,(kl) ... aj (km). Recall from (2.5) that supp ca1 { j, j + 1]. 
Therrore, remmTg-iiT (4.5)-ony Lyl- ilerWtm wi,( K)j #; we-iwe- kP =-.p or jp- 4- 

all p. Thus K is strictly increasing unless kp= kP+ for some p (possible in case 
jP + 1 = jp+ ). But, in the latter case, the determinant is trivially zero and hence can 
be ignored. This finishes the proof of (4.4) for this special case. 

We prove the general case by induction on the length difference d:= I1 - it, 
having just proved it for d = 1. Assuming it correct for a given d, let r be a 
refinement of t with JrI - ItI = d + 1 and let s be a one-point refinement of t which is 
refined by r. Then, with 

A":= (Nj"(xi)) and Nj":= Njir, all], 

we have N.' = E aj(l)N,". Further, from (4.5) and the induction hypothesis, 

det A(I, J) = E b,(L) det A"(I, L) 

with 

(4.6) bj(L):= E +aj(K)a' (L) >, 0. 

which makes (4.4a) obvious. 
The proof of (4.4b) is a bit more complicated. It can be skipped if only the total 

positivity of A is of interest. We must show that supp b. = supp /3, with 
/j(L):= 1j1(11) ... * *,,('m) Suppose first that fi(L) = 0. Then /3i(l) - 0 for some 
j e J. 1 e L. Therefore, from (2.6), E aj(i)a'(l) = 0, and, since all terms in this sum 
are nonnegative, they must all be zero. Thus, aJ(K)a' (L) = 0 for all K. But by 
induction hypothesis, supp a' = supp a', therefore also aj(K)a'(L) = 0 for all K. 
We conclude with (4.6) that supp b. c supp As. 

To see that supp b. D supply,, we must show that 

(4.7) Aj (L) # 0 implies a. (K) a'K(L) 0 0 for some increasing K. 

Since supp a'K = supp aK, this implies that a(K)a'(L) 0 0 for this increasing K, 
hence also b.(L) 0 0 from (4.6). 

For the proof of (4.7), it is sufficient to show the existence of a K with 

(4.8) k IEcAh { i:ajP(i)a1(1p)#O}, alip, 

and kP < kP+1, all p. Then Ai c { j, j + 1 ) and, since 

()= a0(] )a (l) + a/I + 1) ayi+(l), 

(L ) 0+ 0 implies that 

0 + A1, all] E J. 

Hence, the existence of K satisfying (4.8) is assured. To finish the proof, we must 
show that it is possible to choose such a K which is also increasing. If A1 n A11 = 
0, then we have Ip < k_+1 for any K satisfying (4.8). Thus, we only have to 
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consider how to choose the components of K corresponding to a connected compo- 
nent Ah,... AAj'. By this we mean that 

Ai nAj+1 0 forp~ v<q, 

while, for any i 0 jp9... 'Jq9 

AilAj =n 0 forp v<q. 

Then we can write (jp..... qq) = (j]j + 1,... J'), hence, q - p = j' -]. Further, 

i A Ai for i =j + 1, ... ,j'. Hence, if also j E A1, then the choice k =] i, all v, will 
do. In the same way, we have i + 1 E Ai for i = j, ... ,]' - 1. Hence, if j' + 1 E Ai,, 
then the choice k, = ji + 1, all v, will do. We claim that the remaining case 

j e Ai and j' + 1 o Ail 

cannot occur since it would imply that there are at least k entries in r between r1 and 
r? +k. Indeed, with supp a =: [1, u], it would follow that u < lp, while also q< 1', 

with supp a'?i =[1', u']. Further, let s, be the additional knot in s. Then, by (2.5), 
Ai n Ai+1 0 implies si+l < Sv < Si+k+l,i =j,...J', therefore si, + l < SJ+k, and 

so 1' < u + k while also p + k - q - 1 =j + k - (j' + 1) < u + k - 1'. This 
would imply that 

Ip < Ip+l < ... < lq < I' < u + k < lp + k9 

hence k = lp + k - lp > 1 + (u + k - l') + 1 + q -p > 1 + (p + k - q - 1) + 
1 + q - p = k + 1. 

Trn-uiui-2 ThematrixA ca(4;2)-irivyi afmiv-. Morevverulsubrr of -A 

formed by rows i 1... " im and columns , ... .,im has a positive determinant if and only if 

it is "good", i.e., 

xi E suppNj, v= =,...,r. 

Proof. We already proved that det B = 0 unless B is "good". Now, to prove that a 
"good" B has a positive determinant, we choose a refinement s of t so fine that 

(4.9) for each i E I, Nj'(x,) 0 0 implies that Nj'(xp) = 0 for allp 0 i. 

Then each A'(I, K) appearing in (4.4a) has at most one nonzero entry in each 
column, hence is "good", therefore, nonzero, only if it is diagonal, in which case its 
determinant is obviously positive. To finish the proof, we must show that- at least one 
of the matrices appearing in the sum in (4.4a) with a positive coefficient is "good". 
Here is one such. Choose K so that Sk is the first point in s to the left of xi, 
p= 1,.. .,m. Since Nj(xi) 0, this implies that aj(kp) 0, allp. 0 

COROLLARY (I. SCHOENBERG AND A. WHITNEY [7]). The interpolation problem (4.1) 

has a unique solution for all (yi)n if and only if xi E supp NE, i = 1,... ,n. 

We can also allow coalescence of the interpolation nodes. If (zi) is such a 
nondecreasing sequence of nodes, then we can think of it as the limit of strictly 
increasing sequences (xi). Correspondingly, repetition of a zi corresponds to re- 
peated or osculatory interpolation, i.e., the matching of higher derivatives. Precisely, 
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(4.1) becomes 
n 

(4.10) EXjiDiNj(zi) = yi, i = 1,... ,n, 
1 

where tt is the number of j < i for which zj = zi. We still require that any point 
appear at most k times totally in z and t. The coefficient matrix of (4.10) is 

(4.11) A := A (DuiNj(zj))711. 

It is clear that A need not be totally positive since entries involving derivatives 
may be negative. However, as a well-known argument shows, if M is a minor formed 
by rows il,... . ,im and columns]j,. . . jim with the property 

(4.12) iv-1 < iv - 1 implies z11_j < Zj, V=1,...,m, 

then M > 0. In fact, if M(x) denotes a minor corresponding to distinct nodes 
x = -(x.... ,Xm), then subtracting row one from row two shows that M(x)/(x2 - x1) 

converges as x2 -x- X1 to- the- minor M' which replaces- row- two of Mf(x)- boy- first 
derivatives at x1. Hence, M' > 0. Using this type of limiting process, we see that any 
minor M satisfying (4.12) is nonnegative. 

We can also characterize those M satisfying (4.12) which are positive, namely, they 
satisfy 

(4.13) ZE suppNj) v = 1,...,m. 

The necessity of (4.13) is proved in the same way that the necessity of (4.9) was 
established. 

The sufficiency of (4.13) is proved by making slight modifications to the earlier 
proof. For this, it will be convenient to allow a point zi to appear a total of more 
than k times in s and x. This is acceptable provided we stipulate that all B-splines 
and their derivatives be interpreted as right limits at such zi, that is at z i With this, 
let s be a refinement of t such that each node zi appears as a knot in s exactly k 
times, and similarly each t1 appears in s exactly k times. If J satisfies (4.13), we 
choose L so that s = zi and the number of j < 1P with sj = s, is ii . Since the 
coefficients a(K) in (4.4a) are independent of x, we then obtain det A(I, J) as a 
positive combination of certain (nonnegative) minors of A':= As,. In particular, the 
submatrix A'(J, L) will appear in that sum with positive coefficient since aj(L) > 0, 
and det A'(J, L) > 0 since A'(J, L) is lower triangular with positive diagonal. We 
have therefore proved the following theorem. 

THEOREM 3. For the matrix A of (4.11), and each I, J satisfying (4.12), det A(I, J) 
> 0. This minor is positive if and only if (4.13) is satisfied. In particular, (4.10) has a 
unique solution if and only if zi E supp Ni, i = 1.. , n. 
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